What is Radiation Damage in Scintillators?

Question 

What is Radiation Damage in Scintillators?

Answer 

Radiation damage is defined as the change in scintillation characteristics caused by prolonged exposure to intense radiation. This damage manifests itself by a decrease of the optical transmission of a crystal which causes a decrease in pulse height and deterioration of the energy resolution of the detector. Radiation damage other than radio-activation is usually partially reversible; i.e. the absorption bands often disappear slowly in time; some damage can be annealed thermally.

In general, doped alkali halide scintillators such as NaI(Tl) and CsI(Tl) are rather susceptible to radiation damage. All known scintillation materials show more or less damage when exposing them to large radiation doses. The effects usually can only be observed clearly with thick (> 5 cm) crystals. A material is usually called radiation hard if no measurable effects occur at a dose of 10.000 Gray. Examples of radiation hard materials are CeBr3 and YAP:Ce.

FAQ Category 
Radiation Detection & Isotope Identification