
Model 686

14-Bit Arbitrary Waveform Generator

Features

- Function Generator Mode Interface
- AWG Mode Interface
- Pulse Pattern Generator Interface
- 2, 4 Analog Channels
- Up to 20 GS/s
- 14 Bit Vertical Resolution

Applications

- Optics, Photonics, RF Wireless
- Quantum Applications
- Automotive
- Advanced Research Applications
- Semiconductors Tests
- Aerospace and Defense

Model 686

20 GS/s - 14 Bit AWG

TABLE OF CONTENTS

MODEL 686 ARBITRARY WAVEFORM GENERATOR	3
Features & Benefits	3
Model 686 Front	3
Model 686 Back	3
MODEL 686 USER INTERFACE	4
Simple Rider AFG: Function Generator Mode Interface	4
Simple Rider TrueArb: AWG Mode Interface	4
Simple Rider PPG: Pulse Pattern Generator (PPG) Mode Interface	5
Model 686 Applications	5
Optics & Photonics, RF Wireless	5
Quantum Applications	5
Automotive	6
Advanced Research Applications	6
Semiconductors Test	7
Aerospace and Defense	7
TABLE OF AVAILABLE MODELS	8
OPTIONS AND ACCESSORIES	8
MEMORY VS. MODEL AND OPERATING MODES	8
TECHNICAL SPECIFICATIONS	9
General Specifications	9
True Arb – Baseband mode specifications	9
AFG Mode Specifications	11
Pulse Pattern Generator (PPG) Specifications – Optional	13
Timing and Clock	15
Digital Outputs	16
8 bit CML to LVTTL Converter Probe (Optional AT-DTLL8)	16
Proprietary Mini SAS HD to SMA cable (Optional) (TBD)	16
Auxiliary input and output characteristics	16
DOCIMENT HISTORY	21

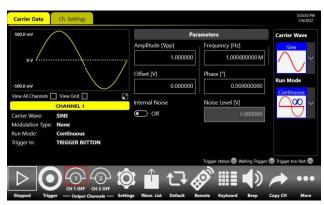
MODEL 686 ARBITRARY WAVEFORM GENERATOR

Features & Benefits

- Sample rate can be programmed in from 1 S/s up to 20 GS/s, with 14-bit vertical resolution, ensures exceptional signal integrity
- Arbitrary waveform memory up to 9 Gpts
- Mixed Signal Generation 2 or 4 Analog channels with up to 32 synchronized Digital Channels for debugging and validating digital design
- Three operation modes Simple Rider AFG (DDS AFG mode), True Arb (variable clock Arbitrary AWG mode) and PPG (Pulse/Serial Patter Generator Optional)
- Digital outputs provide up to 10 Gb/s data rate in programmable CML standard. CML to LVTTL adapter is available
- Advanced sequencer with up to 16384 user defined waveforms provides the possibility of generating complex signal scenarios with the most efficient memory usage
- Windows based platform with 7in touchscreen, front panel buttons and knob
- Compact form factor, convenient for bench top and fully fit with 3U 19" rackmount standard
- LAN, USB TMC and GPIB interfaces for remote control

Model 686 Front

Model 686 Back



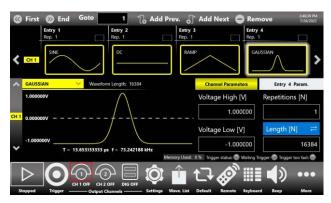
MODEL 686 USER INTERFACE

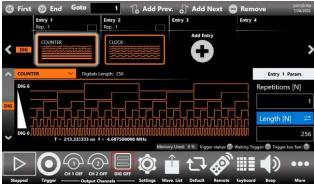
Simple Rider AFG: Function Generator Mode Interface

Simple Rider AFG UI is designed for touch and it has been developed to put all the capabilities of modern Waveform Generators right at your fingertips. All instrument controls and parameters are accessed through an intuitive UI that recalls the simplicity of Tablets and modern smart phones: touch features and gestures are available to engineers and scientists to create advanced waveforms or digital patterns in few touches.

- The swipe gesture gives easy access to the output waveform parameters
- A touch-friendly virtual numeric keypad has been deisgned to improve the user experience on entering the data
- Time saving shortcuts and intuitive icons simplify the instrument setup

Simple Rider TrueArb: AWG Mode Interface

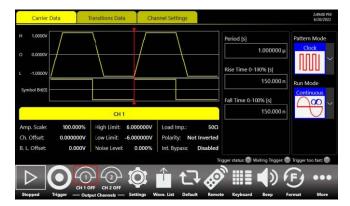

In **Simple Rider True-Arb** interface, the users can define complex waveforms with up to 16,384 sequence entries of analog waveforms and digital patterns, define their execution flow by means of loops, jumps and conditional branches.


Digital output combined and synchronized with analog output signals represent an ideal tool to troubleshoot and validate digital design.

The waveform memory length of up to 9 GSamples on each channel combined with up to 16,384 and up to 4,294,967,294 repetitions, make the Model 686 the ideal generator for the most demanding technical applications.

Thanks to the intuitive and easy waveform sequencer user interface, the most complex waveform scenarios can be created with just few screen touches.

Up to 4 instruments can be synchronized together in order to obtain a 16 analog – 128 digital channel generator. A dedicated synchronization bus guarantees the intra-chassis synchronization. Arb Rider supports the standard Ethernet interface for remote control and easy customized instrument programming.



Simple Rider PPG: Pulse Pattern Generator (PPG) Mode Interface

The easiest touch screen display interface allows to create patterns scenarios, only in a few screen touches.

In summary the Pulse Pattern Generator provides the capability to generate PRBS patterns and up to 12 MSymbols custom patterns where bit transitions can have arbitrarily user defined shapes. The Model 686 Pulse Pattern Generator can generate patterns up to 6.5Gbaud.

The software architecture provides the possibility to easily generate the patterns in different generation modality and also gives the opportunity to modulate the patterns with

internal or external signals with the purpose to generate also different effects of noise (jitter, ripple, ...).

Model 686 Applications

Optics & Photonics, RF Wireless

The Model 686 is the ideal choice for the frontier of science & technology experiments and cutting-edge challenges like High Energy Physics, Optical, laser and photonics and RF Wireless Communication.

The Model 686 Series Instrument can create virtually any signal – analog or digital, ideal or distorted, standard or custom.

You can easily build complex RF/IF/IQ waveform, extremely small width, high amplitude pulses to drive electro/acousto-optic modulators, pulsed laser diode or it can be used in quantum optics experiments like manipulating nitrogen vacancy color center in diamond.

Highlights

- Drive electro-optic modulator
- Modulating and driving laser diode
- Quantum optics emitters testing
- RF Wireless Digital modulation

Quantum Applications

Emergy Quantum technologies like Quantum Sensing, Quantum Key Distribution will improve our lives in the next years.

They will be fundamental tools for secure communication and how we measure, navigate, study, explore, see, and interact with the world around us by sensing changes in motion, and electric and magnetic fields.

Recently the investigation of light-matter coupling between ensembles of cold atoms and photons propagating in so-called optical nanofibers, i.e., glass fibers whose diameter is smaller than the optical wavelength.

The special properties of these fibers make them suitable for use as a "quantum laboratory."

The Model 686 is the perfect tool to face all these new technologies challenges, since it allows you to generate pulses with ultra-fast rise and fall time, Gaussian shapes, multi-level PAM and PRBS signals, complex pulse trains, pulsed RF signals with impairments that are the key factors for those kind of tests.

Highlights

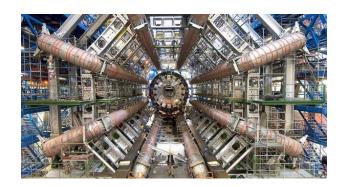
- PRBS signals generation
- QKD and Quantum sensing
- Cold atoms
- Manipulate nitrogen vacancy color center in diamond
- Minimum delay between Trigger In Analog Out
- Up to 16 analog channels and 128 digital channels fully synchronized
- Built-in sequencer with conditional/unconditional/dynamic jump features, two independent Trigger inputs, up to 4 Marker outputs

Today's cars are including a lot of highly sophisticated electronic control unit with very sensitive electronic components.

As demands go up, next-generation advanced driver-assistance systems (ADAS) require camera and radar systems with increasingly high resolution. Camera, LIDAR, Radar and Ultrasound devices need higher bandwidth and lower latency networking and complex automotive technologies to come.

Physical layer testing, transmit & receiver testing and channel testing need a high performance and easy-to-use tools to satisfy the latest automotive challenges.

The Model 686 combines 20 GS/s with 14-bits vertical resolution, represents the ideal instrument for generating the real-world signals that are necessary to emulate the most demanding testing cases.


Highlights

- Electrical standards emulation up to 5 V
- Physical layer testing
- Sensor testing
- EMI debugging, troubleshooting and testing

Advanced Research Applications

The Model 686 has the best overall product in the market between signal amplitude and bandwidth: you can generate 5Vpp pulses with more than 6.5 GHz of analog bandwidth.

The combination of ultra-fast edge & minimum pulse width generation, excellent dynamic range and easy to use interface perfectly meet the scientists and engineers working on large experiments such Accelerators, Tokamak or synchrotrons to emulate signals without creating specifics test boards.

Pulses may be easily generated for applications such Pulse Electron Beam or X Ray Sources, Flash X-ray Radiography, Lighting pulse simulators, high Power Microwave modulato.

Highlights

- Emulation of detectors
- Emulation of signal sources adding noise
- Generation/playback of real-world signals

Semiconductors Test

Consumers continually demand better performance in a smaller form factor with reduced power requirements.

This in turn has led to devices with much smaller footprints, much higher data throughput, and lower power requirements. These features enable many of the technologies that consumers take advantage of today such as SATA, USB, and PCI Express.

The Model 686 Series allows the testing of these high-speed devices, since it can provide up to 16 analog output channels with a maximum data rate of 8 Gbps and it can perform PCI-Express Gen. 3 debugging.

Emulation of complex signals generated with inclusion of noise or distortions may became an excellent way to provide Compliance Components Test to help semiconductors engineers.

The fast edges and pulse generation can be used to provide characterization in fast power devices.

Highlights

- High-speed serial testing
- Semiconductors characterization
- High-speed clock generation
- Frequency response, intermodulation distortion and noise-figure measurements
- Pulse pattern generator

Aerospace and Defense

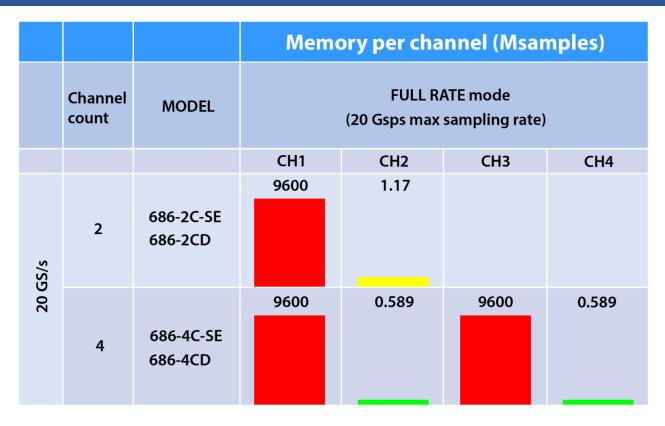
Radar, Lidar and Sonar design and testing perfectly match with the Model 686 Series.

Moreover the capability to generate high bandwidth signals can be used on digital modulation systems for Radio Applications or others I/Q signal modulation.

The generation of high-speed signals combined to the advanced sequencer with the fast sequence switch feature, allow the emulation of complex real world signal scenarios.

Highlights

- Radar and Lidar RF modulated signals emulation
- Electronic Warfare complex scenarios generation
- Avionics testing


TABLE OF AVAILABLE MODELS

Model	Description
686-2C-SE	2 CH – 5Vpp Single ended outputs - 20 GS/s
686-2CD	2 CH – 2.5Vpp (1.25Vpp single ended) Differential outputs - 20 GS/s
686-4C-SE	4 CH – 5Vpp Single ended outputs - 20 GS/s
686-4CD	4 CH – 2.5Vpp (1.25Vpp single ended) Differential outputs - 20 GS/s

OPTIONS AND ACCESSORIES

Item	Description	
686-PAT	Serial Pattern Generator (SPG)	
686-8DIG	8CH Dig license (available only for 4-channels models)	
686-16DIG	16CH Dig license (available only for 4-channels models)	
686-32DIG	32CH Dig license (available only for 4-channels models)	
686-FSS	Fast Sequence Switch	
686-WAR	3 years warranty extension	
RIDER-MINI-SAS-HD	Mini Sas HD cable for digital probe, 8 Differential signal (available only for 4-channels	
	models)	
RIDER-686-SYNC	Synchronization cable for all 686 models	
AT-DTTL8	LVDS to LVTTL digital adapter probe (available only for 4-channels models)	
AT-LVDS-SMA8	AA8 CML to SMA digital adapter cable (available only for 4-channels models)	
GP-IB / USB-TMC	GPIB and USBTMC Ports for Remote Control	
RIDER-RACK	Rackmount kit for Rider instrument system	

MEMORY VS. MODEL AND OPERATING MODES

TECHNICAL SPECIFICATIONS

General Specifications

All specifications are typical unless noted otherwise. The guaranteed performances are referred to a calibrated instrument that has been stored for a minimum of 2 hours within the operating temperature range of 5° C to 40° C and after a 45-minute warm up period. Within a $\pm 10^{\circ}$ C after auto-calibration.

	686-2C-SE	686-4C-SE
	686-2CD	686-4C-SE
Operating Mode	AFG Mode – True Arb Mod	de – SPG Mode (optional)
Number of Markers and Analog Channels		
Analog channels	2	4
Markers	2	4
	686-2C-SE	686-4C-SE
	686-2CD	686-4C-D
	686-4C-SE	
Number of Digital Channels		
Digital Channels	-	32
	686-2C-SE	686-2CD
	686-4C-SE	686-4CD
Output Channels		
Output Type	Single ended DC coupled	Differential DC coupled
Output Impedance	Single ended: 50 Ω	Single edned: 50Ω
		Differential: 100 Ω
Connectors	SMA on fr	ont panel
DC Amplitude		
Amplitude range	±2.5 V (into 50 Ω)	± 0.625 V Se. (into 50Ω)
		±1.25 V Diff. (into 100 Ω)
Resolution	500 μV (nom), 5 digits	100 μV (nom), 5 digits
Amplitude accuracy	$\pm (1.5\% \text{ of } \text{setting} + 15\text{mV})^3$	$\pm (1\% \text{ of } \text{setting} + 2\text{mV})^3$
DC Baseline Hardware Offset (Common mode		
offset)		
Resolution	< 4 mV o	r 4 digits
Range (50 Ω into 50 Ω)	-2.5 V to +2.5 V	-2 V to +2 V
Range (50 Ω into High Z load)	-2.5 V to +2.5 V	-4 V to +4 V
Accuracy (50 Ω into 50 Ω) (guaranteed)	±(1% of setting + 15 mV)	\pm (1% of setting + 5 mV)
AC Accuracy (1 kHz sine wave, 0 V offset,	±(1% of setting [Vpp] + 5mV) ³
> 5 mV _{p-p} amplitude, 50 Ω load) (guaranteed)		

³The specification is guaranteed in the range 0% to 80% of full scale output

True Arb - Baseband mode specifications

	686-2C-SE 686-4C-SE	686-2CD 686-4CD	
Operating Modes	Full Rate Mode	(Variable clock)	
	Half Rate Mode	(Variable clock)	
Sampling Rate	686-XD	686-4CD	
Full Rate Mode	1 S/s to 20 GS/s ⁴	1 S/s to 20 GS/s ⁴	
Half Rate Mode	1 S/s to 10 GS/s ⁴]	
Sin(x)/x	8.85 GHz @ 20GS/S	8.85 GHz @ 20GS/S (686-2CD/686-4CD)	

Run Modes	Continuous, triggered contin	- · · · · · · · · · · · · · · · · · · ·
Vertical Resolution	14 bit	
Max Waveform Memory		
Full Rate Mode (20 GS/s)	686-2C-SE	/ 686-2CD
	CH1: 9.6 Gsamples;	•
	686-4C-SE	•
		CH2, CH4: 589 ksamples
Waveform Granularity	1 if the entry lengtl	<u> </u>
,		288 and ≤ 8928 samples
Sequence Length		.6384
Sequence Repeat Counter	1 to 42949672	294 or infinite
Timer		
Range	17.6 ns to	o 429 ms
Resolution	±1 sampling	g clock cycle
Analog Channel to Channels skew		•
Range	0 to 1	.63 μs
Resolution	4C Models:	
	CHx to CHx (x=1,2,3,4): 1 sampling Clock Cycle CH1/CH2 couple to	
	CH3/CH4 couple: 100 fs	
	2CH Models:	
	CHx to CHx ()	<=1,2): 100 fs
Accuracy	±(1% of sett	ing + 20 ps)
Initial skew	< 20 ps	
Calculated bandwidth (0.35 / rise or fasll	≥ 5 GHz	≥ 5.8 GHz
time ₁₀₋₉₀)		
Measured 3dB bandwidth (sin(x)/x	5.8 GHz	
compensated)		
SFDR @ 100 MHz ⁵	< -65 dBc	
Measured across DC to Fs/2 where Fs is:		
Fs = 20 Gsa/s		
SFDR	18 mHz to ≤ 100MHz: < -65dBc	
Measured across DC to Fs/2 where Fs is:		
Fs = 20 Gsa/s		
⁵ Measured excluding Fs – 2*fout and Fs – 3*fout and exclu		
Rise/fall time (1 V _{p-p} single-ended 20% to 80%)	≤ 50 ps	≤ 45 ps
Rise/fall time (1 V _{p-p} single-ended 10% to 90%)	≤ 70 ps	≤ 60 ps
Overshoot (1 V _{p-p} single-ended)	< 8%	<6 %
Random jitter on clock pattern	< 2	ps

AFG Mode Specifications

	686-2C-SE 686-4C-SE	686-2CD 686-4CD
Amplitude		
Range	0 to 5 Vpp (into 50 Ω)	0 to 2.5 Vpp Diff. (into 100 Ω) 0 to 1.25 Vpp Se. (into 50 Ω)
Resolution	500 μV (nom), 5 digits	100 μV (nom), 5 digits
Operating Mode	DDS	Mode
Standard Waveforms		e (Noise, DC, Sin(x)/x, Gaussian, xponential Decay, Haversine
Run Modes	Continuous, modu	lation, sweep, burst
Arbitrary Modes		lution: 14-bit :h: 16,384 points
Internal Trigger Timer		
Range	6.5 ns	to 100 s
Resolution	31.2	25 ps
Accuracy		ting + 5 ps)
Sine Waves		
Max Frequency	6.5	GHz
Frequency Range Sine (50 Ω into 50 Ω)	18 mHz to ≤ 3.5 GHz: 5 Vpp 3.5 GHz to ≤ 4.5 GHz: 4 Vpp	18 mHz to ≤ 6.5 GHz: 2.5 Vpp Diff. 18 mHz to ≤ 6.5 GHz: 1.25
Flatness	4.5 GHz to ≤ 6.5 GHz: 3 Vpp DC to 6 GHz: ±0.5 dB (1 Vpp, relative to 1 kHz)	Vpp Se. DC to 6.5 GHz: ±0.5 dB (1 Vpp diff., relative to 1 kHz)
Harmonic Distortion (1 V_{p-p})	18mHz to ≤ 1MHz < -60 dBc 1MHz to ≤ 1GHz < -50 dBc 1GHz to ≤ 6.5GHz < -40 dBc	,
Total Harmonic Distortion (1 V _{p-p})	10 Hz to 20 kHz < 0.2%	
Spurious ⁶ Measured across DC to Fs/2 where Fs is Fs = 20 Gsa/s	18 mHz to ≤ 1 MHz < -60 dBc	
Phase Noise (1 V _{p-p} , 10 kHz offset)	20 MHz: < -127 dBc/Hz typ. 100 MHz: < -124 dBc/Hz typ. 1 GHz: < -105 dBc/Hz typ.	
⁶ For Single ended models, the spurious are evaluated @2	1Vpp single ended nominal output amplit	ude
Square Waves		
Channels with Square Wave		annels
Frequency Range) ≤ 2.5 GHz
Rise/fall time (10% to 90%)	120 ps	
Rise/fall time (20% to 80%)	90	ps
Overshoot (1 V _{p-p})	< 2%	
Jitter (rms)	< 2 ps	
Pulse Waves		
Channel with Pulse Wave	All Channels	
Frequency Range	18 mHz to ≤ 2.5 GHz	
Pulse Width	150 ps to (Per	iod – 150 ps) ⁷
Pulse width resolution	20 ps or	15 digits
Pulse duty	0.1% to 99.9% (limitation	ons of pulse width apply)
Leading/trailing edge transition time (10% to 90%)	120 ps to 1000 s	

⁷ Below 150 ps width, the pulse amplitude will have son	ne reduction with respect to the set value)	
Transition time Resolution	2 ps or 15 digits	
Overshoot (1 V _{p-p})	< 2%	
Jitter (rms, with rise and fall time ≥ 400ps)	< 2 ps	
Double Pulse Waves		
Frequency Range	18 mHz to ≤ 1.25 GHz: 10Vpp	18 mHz to ≤ 1.25 GHz: 5Vpp
(Vpp= Vpp1 + Vpp2)		Diff. (18 mHz to ≤ 1.25 GHz: 2.5Vpp Se)
Other Pulse Parameters	Same as Pi	ulse Waves
Ramp Waves		
Frequency Range	18 mHz to	250 MHz
Linearity (< 10 kHz, 1 V _{p-p} , 100%)	≤ 0	.1%
Symmetry	0% to	100%
Other Waves		
Frequency Range		
Exponential Rise, Exponential Decay	18 mHz to	250 MHz
Sin(x)/x, Gaussian, Lorentz, Haversine	18 mHz to	500 MHz
Additive Noise		
Bandwidth (-3 dB)	4 0	GHz
Level	0 V to 2.5 V - abs(carrier max	0 V to 0.625 V Single Ended –
	value [V _{pk}])	abs (carrier max value $[V_{pk}]$)
		0 V to 1.25 V Differential – abs
		(carrier max value [V _{pk}])
Resolution	1 r	mV
Arbitrary		
Number of Samples	2 to 1	L6384
Frequency Range	1 μHz to 2.5 GHz	
Analog Bandwidth (-3 dB)	2.9	GHz
Rise/fall time (10% to 90%)	120) ps
Rise/fall time (20% to 80%)	9	0
Jitter (rms)	< 2	2 ps
Frequency Resolution		
Sine, square, pulse, arbitrary, Sin(x)/X	18 mHz o	r 15 digits
Gaussian, Lorentz, Exponential Rise,	18 mHz o	r 14 digits
Exponential Decay, Haversine		
Frequency Accuracy		
Non-ARB		500 ppb of setting (Opt.)
ARB	±2.0 ppm of setting ±1 μHz ±5	500 ppb of setting ±1 μHz(Opt.)
Modulations		
Amplitude Modulation (AM)		
Carrier Waveforms		ot Pulse, DC and Noise), ARB
Modulation source	Internal o	r external
Internal modulating waveforms		amp, Noise, ARB
Modulating frequency		IHz, External: 1 GHz max.
Depth	0.00% to	120.00%
Frequency Modulation (FM)		
Carrier waveforms		llse, Square, DC and Noise), ARB
Modulation sources		or external
Internal modulating waveforms		amp, Noise, ARB
Modulating frequency		1Hz, External: 1 GHz max.
Peak deviation	DC to 6	5.5 GHz

Phase Modulation (PM)		
Carrier waveforms	Standard waveforms (except Pulse, Square, DC and Noise), ARB	
Modulation source	Internal or external	
Internal modulating waveforms	Sine, square, ramp, noise, ARB	
Modulating frequency	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Phase deviation range	0° to 360°	
Frequency Shift Keying (FSK)		
Carrier waveforms	Standard waveforms (except Pulse, Square, DC and Noise), ARB	
Modulation source	Internal or external	
Internal modulating waveforms	Square	
Key rate	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Hop Frequency	1 μHz to 6.5 GHz	
Number of Keys	2	
Phase Shift Keying (PSK)		
Carrier waveforms	Standard waveforms (except Pulse, Square, DC and Noise), ARB	
Modulation source	Internal and External	
Internal modulating waveform	Square	
Key rate	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Hop phase	0° to +360°	
Number of keys	2	
Pulse Width Modulation (PWM)		
Carrier Waveforms	Pulse	
Modulation Source	Internal or external	
Internal modulating waveforms	Sine, Square, Ramp, Noise, ARB	
Modulating frequency	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Deviation range	0% to 50% of pulse period	
Sweep		
Туре	Linear, Logarithmic, staircase, and user defined	
Waveforms	Standard waveforms (except Pulse, DC and Noise), ARB	
Sweep time	4ns ≤ Rise time + Hold time + Fall time ≤ 2000s	
Rise/Hold/return times	0 to 2000 s	
Rise/Hold/return time resolution	1ps or 12 digits	
Total sweep time accuracy	≤ 0.4%	
Start/stop frequency range	18 mHz to Max Waveform frequency (see Frequency Range for	
	the Specific Waveform)	
	Internal/External	
Trigger Source		
Trigger Source Burst		
	Standard waveforms (except DC and Noise), ARB	
Burst		

Pulse Pattern Generator (PPG) Specifications – Optional

	686-2C-SE	686-2CD	
	686-4C-SE	686-4CD	
General Specifications			
Operating Mode	NRZ, RZ or R1 bitstre	eam Pattern generator	
Pattern types	Clock Pattern, Custom Pattern, F	Clock Pattern, Custom Pattern, PRBS pattern, Go-Through Pattern,	
	Pulse	Pattern	

Internal Trigger Timer Range Resolution Accuracy Accuracy Accuracy Arabitrarily user defined transition shapes Programmable duration for any transition Transition speculiarity Arbitrarily user defined transition shapes Programmable duration for any transition Transition stemory length Arbitrary, predefined Transition shapes Sine, Square, Pulse, Ramp, up, Ramp, down, DC, Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to Period/2 for Clock Pattern 150ps to Pattern Pattern Rate 150ps to Period/2 for Clock Pattern 150ps to Pattern	Run Modes	Continuous, modulation, burst (Triggered, Gated, Continuous triggered)	
Resplement	Internal Trigger Timer	triggereu)	
Resolution 31.25 ps Accuracy ±(0.1% setting + 5 ps) Transition Specifications Transition specifications Transition peculiarity Arbitrarily user defined transition shapes Programmable duration for any transition Transition types Arbitrarily predefined Transitions memory length Predefined transition shapes Sine, Square, Pulse, Ramp_up, Ramp_down, DC, Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to Period/2 for Clock Pattern 150ps to Period/2 for Pulse Pattern 150ps to Period/2 for Pulse Pattern 150ps to Period/2 for Clock Pattern 150ps to Period/2 for Pulse Pattern 150ps to Period/2 for Clock Pattern 150ps to Period/2 for Clock Pattern 150ps		6.5 ns to 100 s	
Accuracy			
Transition Specifications Arbitrarily user defined transition shapes Programmable duration for any transition Transition types Arbitrarily user defined transition shapes Programmable duration for any transition Transition types Transition shapes Arbitrary, predefined Transition duration [0-100%] Sine, Square, Pulse, Ramp_up, Ramp_down, DC, Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to Period/2 for Clock Pattern 24 Clock Pattern 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to (Period-150ps) for Pulse Pattern 24 Clock Pattern 24 Max custom pattern frequency 3.25 GHz Pattern levels 2 levels Overshoot (1 V _{PD}) < 2½		·	
Transition peculiarity Transition types Transition types Transition semory length Predefined transition shapes Sine, Square, Pulse, Ramp_up, Ramp_down, DC, Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine Transition duration [0-100%] Transition duration for Custom, PRBS and Go-Through pattern for Library pattern for Library pattern [150ps to Pymbol gloor Pulse Pattern 150ps to Pymbol gloor Pulse Pattern 150ps to Pymbol gloor Pulse Pattern 120ps to Period-150ps) for Pulse Pattern 120ps to Puls		Ξ(0.170 3ctting 1.3 μ3)	
Transition types Arbitrary, predefined Transitions memory length 64 points Predefined transition shapes Sine, Square, Pulse, Ramp_up, Ramp_down, DC, Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Hawersine Transition duration [0-100%] 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to (Period-150ps) for Pulse Pattern 150ps to (Period-150ps) for Pulse Pattern 4 24 Clock Pattern 24 Max clock pattern frequency 3.25 GHz Pattern levels 2 levels Overshoot (1 V _{pp}) < 2 %	•	Arhitrarily user defined transition shapes	
Transition types Transitions memory length Predefined transition shapes Fredefined transition shapes Sine, Square, Pulse, Ramp_up, Ramp_down, DC, Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine 150ps to Symbol duration for Custon, PRBS and Go-Through pattern 150ps to Period/2 for Clock Pattern 150ps to Pattern 150ps to Period/2 for Clock Pattern 150ps to	Transition pecanarity	· · · · · · · · · · · · · · · · · · ·	
Transitions memory length Predefined transition shapes Sine, Square, Pulse, Ramp_up, Ramp_down, DC, Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine Transition duration [0-100%] Transition duration [0-100%] 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to Period/2 for Clock Pattern 150ps to Period-150ps) for Pulse Pattern 24 Clock Pattern Max clock pattern frequency 3.25 GHz Pattern levels 2 levels Overshoot (1 V _{PP}) 3.25 GHz Pattern frequency 4.2 Ps Custom Pattern Max custom pattern rate 4.2 Up to 6.5 Gbaud 4.2 Evels 4.2 Up to 6.5 Gbaud 4.3 or 4 levels 4.4 Evels 4.4 Evels 4.5 Up to 6 MSymbols (3 or 4 levels) 4.5 Up to 6 MSymbols	Transition types		
Predefined transition shapes Sine, Square, Pulse, Ramp_up, Ramp_down, DC, Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine Transition duration [0-100%] 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to Period/2 for Clock Pattern 150ps to Period/2 for Clock Pattern 150ps to Period/2 for Pulse Pattern 24 Clock Pattern 24 Max clock pattern frequency 3.25 GHz Pattern levels 2 levels Overshoot (1 V _{PP}) < 2%	, , , , , , , , , , , , , , , , , , ,		
Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to Period/2 for Clock Pattern 150ps to Period/2 for Clock Pattern 150ps to Period-150ps) for Pulse Pattern 24 Clock Pattern Max clock pattern frequency Active (ms) Overshoot (1 Vpp) Active (ms) Active (
Transition duration [0-100%] 150ps to Symbol duration for Custom, PRBS and Go-Through pattern 150ps to Period/2 for Clock Pattern 150ps to (Period/2 for Clock Pattern 150ps to (Period/2 for Clock Pattern 24 Clock Pattern Max clock pattern frequency Pattern levels Overshoot (1 V _{PP}) Custom Pattern Max custom pattern rate Pattern levels Predefined custom patters Pattern memory channel Pattern memory channel Pattern levels Pattern levels Pattern levels Pattern length Out 6 MBit (2 levels) Up to 6 MBit (2 levels) Up to 6 MBit (2 levels) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution Min pattern length Overshoot (1 V _{PP}) Avershoot (1 V _{PP}) PRBS Pattern Max PRBS pattern rate Pattern levels PRBS Types PRBS Types PRBS Types PRBS Types Overshoot (1 V _{PP}) Go-Through Pattern Max Go-Through pattern rate Pattern levels Queshoot (1 V _{PP}) Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Queshoot (1 V _{PP}) Queshoot (1 V _{PP}) Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Queshoot (1 V _{PP}) Queshoot (1 V _{PP}) Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Queshoot (1 V _{PP}) Queshoot (1 V _{PP}) Go-Through Pattern Max pulse pattern frequency Up to 3.25 GHz Pattern levels Quests	redefined transition shapes	· · · · · · · · · · · · · · · · · · ·	
Description	Transition duration [0-100%]		
150ps to Period/2 for Clock Pattern 150ps to (Period-150ps) for Pulse Pattern 24 Clock Pattern 24 Max clock pattern frequency 3.25 GHz Pattern levels 2 levels Overshoot (1 V _{Pr}) < 2%	manistration duration [o 100/s]		
Clock Pattern Max clock pattern frequency Pattern levels Overshoot (1 V _{P+P}) Custom Pattern rate Pattern levels Predefined custom patters Pattern levels Pattern levels Pattern levels Overshoot (1 V _{P+P}) Custom Pattern Max custom pattern rate Pattern levels Predefined custom patters Pattern memory channel Up to 6.5 Gbaud Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Pattern length resolution I bit Min pattern length Overshoot (1 V _{P+P}) Axa PRBS pattern Max PRBS pattern rate Up to 6.5 Gbaud Up to 6 MBit (2 levels) Up to 6 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution I bit Min pattern length Overshoot (1 V _{P+P}) PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels PRBS types PRBS 7,9,11,15,23,31 Overshoot (1 V _{P+P}) 4.2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Queston (1 V _{P+P}) 4.2% Go-Through Pattern Max External Pattern Rate Up to 1 Gbit/s Overshoot (1 V _{P+P}) 4.2% Pulse Pattern Max pulse pattern frequency Up to 3.25 GHz Pattern levels Quevels		•	
Clock Pattern Max clock pattern frequency Pattern levels Overshoot (1 V _{PP}) Scape Custom Pattern Max custom pattern rate Up to 6.5 Gbaud Pattern levels Pattern levels Pattern memory channel Pattern memory channel Up to 6 MBit (2 levels) Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Pattern length resolution Alia pattern length Overshoot (1 V _{PP}) PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels Pattern levels Pattern levels Pattern levels Pattern levels Pattern levels Overshoot (1 V _{PP}) ¬		· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clock Pattern		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Max clock pattern frequency	3.25 GHz	
Overshoot (1 V _{P-P}) Jitter (rms) Custom Pattern Max custom pattern rate Pattern levels Predefined custom patters Pattern memory channel Up to 6.5 Gbaud Pattern memory channel Up to 12 MBit (2 levels) Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution Pattern length resolution 1 bit Min pattern length Overshoot (1 V _{P-P}) PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{P-P}) Co-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Qoershoot (1 V _{P-P}) Co-Through pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Qoershoot (1 V _{P-P}) Co-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Qoershoot (1 V _{P-P}) Co-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Qoershoot (1 V _{P-P}) Co-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Qoershoot (1 V _{P-P}) Coershoot (1 V _{P-P}) C			
Jitter (rms) < 2 ps			
Custom Pattern Max custom pattern rate Up to 6.5 Gbaud Pattern levels 2, 3 or 4 levels Predefined custom patters Zero, one, clock, counter Pattern memory channel Up to 12 MBit (2 levels) Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution 1 bit Min pattern length 16 bits Overshoot (1 V _{P-P}) < 2%			
Max custom pattern rate Up to 6.5 Gbaud Pattern levels 2, 3 or 4 levels Predefined custom patters Zero, one, clock, counter Pattern memory channel Up to 12 MBit (2 levels) Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Up to 6 MBit (2 levels) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution 1 bit Min pattern length 16 bits Overshoot (1 V _{p-p}) < 2%			
Pattern levels Predefined custom patters Pattern memory channel Pattern memory channel Pattern memory channel Up to 12 MBit (2 levels) Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Up to 6 MBit (2 levels) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution 1 bit Min pattern length 16 bits Overshoot (1 V _{P-P}) PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{P-P}) Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Qy to 6.5 Gbaud Quershoot (1 V _{P-P}) < 2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Qy to 6.5 Gbaud Quershoot (1 V _{P-P}) < 2% Go-Through Pattern Max Go-Through pattern rate Up to 16.5 Gbaud Quershoot (1 V _{P-P}) < 2% Puttern levels Qy 3, or 4 levels Up to 1 Gbit/s Overshoot (1 V _{P-P}) Qvershoot (1 V _{P-P}) Qve		Up to 6.5 Gbaud	
Predefined custom patters Pattern memory channel Pattern memory channel Pattern memory channel Up to 12 MBit (2 levels) Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Up to 6 MBit (2 levels) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution 1 bit Min pattern length 16 bits Overshoot (1 V _{PP}) RABS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{PP}) 2 levels PRBS -7,9,11,15,23,31 Overshoot (1 V _{PP}) 2 2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels 2, 3, or 4 levels Max External Pattern Rate Up to 1 Gbit/s Overshoot (1 V _{PP}) 2 2% Pulse Pattern Max pulse pattern frequency Up to 3.25 GHz Pattern levels 2 levels		·	
Pattern memory channel Pattern memory channel Up to 12 MBit (2 levels) Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Up to 6 MBit (2 levels) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution 1 bit Min pattern length 16 bits Overshoot (1 V _{P-P}) < 2% PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{P-P}) < 2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Up to 6.5 Gbaud Pattern levels Overshoot (1 V _{P-P}) < 2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Up to 1.5 Gbaud Pattern levels Up to 1.5 Gbaud Pattern levels Up to 1.5 Gbaud Vershoot (1 V _{P-P}) Vershoot (1 V		· · · · · · · · · · · · · · · · · · ·	
Up to 6 MSymbols (3 or 4 levels) (For 2 channel models) Up to 6 MBit (2 levels) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution I bit Min pattern length Overshoot (1 V _{P-P}) 2 2% PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels PRBS types PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{P-P}) 2 2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Up to 6.5 Gbaud Pattern levels Overshoot (1 V _{P-P}) 2 2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Up to 1 Gbit/s Overshoot (1 V _{P-P}) 2 2% Pulse Pattern Max pulse pattern frequency Up to 3.25 GHz Pattern levels	·		
(For 2 channel models) Up to 6 MBit (2 levels) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution 1 bit Min pattern length Overshoot (1 V _{P-P}) 2 % PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{P-P}) 2 % Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Up to 6.5 Gbaud Pattern levels Value Pattern levels Up to 6.5 Gbaud Pattern levels Value Pattern levels Value V	, , , , , , , , , , , , , , , , , , , ,		
Up to 6 MBit (2 levels) Up to 3 MSymbols (3 or 4 levels) (For 4 channel models) Pattern length resolution 1 bit Min pattern length Overshoot (1 V _{P-P}) < 2% PRBS Pattern Max PRBS pattern rate PRBS pattern rate PRBS types PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{P-P}) Go-Through Pattern Max Go-Through pattern Max Go-Through pattern rate Pattern levels PRBS -2,3, or 4 levels Max External Pattern Rate Up to 1 Gbit/s Overshoot (1 V _{P-P}) < 2% Pulse Pattern Max pulse pattern frequency Pattern levels Dy to 3.25 GHz Pattern levels 2 levels		· · · · · · · · · · · · · · · · · · ·	
Pattern length resolution Pattern length Min pattern length Overshoot (1 V _{p-p}) PRBS Pattern Max PRBS pattern Max PRBS pattern rate PRBS types PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{p-p}) Go-Through Pattern Max Go-Through pattern rate Pattern levels Pattern levels Up to 6.5 Gbaud Pattern Up to 6.5 Gbaud Pattern Vershoot (1 V _{p-p}) Co-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Dup to 1 Gbit/s Overshoot (1 V _{p-p}) Covershoot (1 V _{p-p}) Covershoot (1 V _{p-p}		, and the second	
Pattern length resolution Pattern length resolution I bit Min pattern length Overshoot (1 V _{P-P}) PRBS Pattern Max PRBS pattern rate Pattern levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{P-P}) Go-Through Pattern Max Go-Through pattern rate Pattern levels Pattern levels Up to 6.5 Gbaud Pattern Up to 6.5 Gbaud Pattern levels Up to 6.5 Gbaud Pattern levels Up to 6.5 Gbaud Pattern levels 2, 3, or 4 levels Max External Pattern Rate Up to 1 Gbit/s Overshoot (1 V _{P-P}) < 2% Pulse Pattern Max pulse pattern frequency Pattern levels 2 levels		Up to 6 MBit (2 levels)	
Pattern length resolution1 bitMin pattern length16 bitsOvershoot (1 V_{p-p}) $< 2\%$ PRBS PatternMax PRBS pattern rateUp to 6.5 GbaudPattern levels2 levelsPRBS typesPRBS -7,9,11,15,23,31Overshoot (1 V_{p-p}) $< 2\%$ Go-Through PatternUp to 6.5 GbaudPattern levels2, 3, or 4 levelsMax External Pattern RateUp to 1 Gbit/sOvershoot (1 V_{p-p}) $< 2\%$ Pulse PatternUp to 3.25 GHzPattern levels2 levels		Up to 3 MSymbols (3 or 4 levels)	
Min pattern length Overshoot (1 V _{p-p}) PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{p-p}) < 2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels Up to 1 Gbit/s Overshoot (1 V _{p-p}) < 2% Pulse Pattern Max pulse pattern frequency Up to 3.25 GHz Pattern levels 2 levels		(For 4 channel models)	
Overshoot (1 V _{P-P}) < 2% PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels 2 levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{P-P}) < 2% Go-Through Pattern Max Go-Through pattern rate Up to 6.5 Gbaud Pattern levels 2, 3, or 4 levels Max External Pattern Rate Up to 1 Gbit/s Overshoot (1 V _{P-P}) < 2% Pulse Pattern Max pulse pattern frequency Up to 3.25 GHz Pattern levels 2 levels	Pattern length resolution	1 bit	
PRBS Pattern Max PRBS pattern rate Up to 6.5 Gbaud Pattern levels 2 levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{p-p}) < 2%	Min pattern length	16 bits	
Max PRBS pattern rateUp to 6.5 GbaudPattern levels2 levelsPRBS typesPRBS -7,9,11,15,23,31Overshoot (1 V _{p-p})< 2%	Overshoot (1 V _{p-p})	< 2%	
Pattern levels PRBS types PRBS -7,9,11,15,23,31 Overshoot (1 V _{p-p}) Go-Through Pattern Max Go-Through pattern rate Pattern levels Max External Pattern Rate Overshoot (1 V _{p-p}) Pulse Pattern Max pulse pattern frequency Pattern levels 2 levels Up to 6.5 Gbaud 2, 3, or 4 levels Up to 1 Gbit/s < 2% Pulse Pattern Up to 3.25 GHz 2 levels	PRBS Pattern		
PRBS types Overshoot (1 V _{P-P}) Go-Through Pattern Max Go-Through pattern rate Pattern levels Max External Pattern Rate Overshoot (1 V _{P-P}) Pulse Pattern Max pulse pattern frequency Pattern levels Pattern levels Pulse Pattern Pattern levels	Max PRBS pattern rate	Up to 6.5 Gbaud	
$ \begin{array}{c c} \text{Overshoot } (1 \text{V}_{\text{p-p}}) & < 2\% \\ \hline \textbf{Go-Through Pattern} \\ \text{Max Go-Through pattern rate} & \text{Up to 6.5 Gbaud} \\ \text{Pattern levels} & 2, 3, \text{ or 4 levels} \\ \text{Max External Pattern Rate} & \text{Up to 1 Gbit/s} \\ \text{Overshoot } (1 \text{V}_{\text{p-p}}) & < 2\% \\ \hline \textbf{Pulse Pattern} \\ \text{Max pulse pattern frequency} & \text{Up to 3.25 GHz} \\ \text{Pattern levels} & 2 \text{levels} \\ \hline \end{array} $	Pattern levels	2 levels	
Go-Through PatternMax Go-Through pattern rateUp to 6.5 GbaudPattern levels2, 3, or 4 levelsMax External Pattern RateUp to 1 Gbit/sOvershoot (1 V _{p-p})< 2%	PRBS types	PRBS -7,9,11,15,23,31	
Max Go-Through pattern rate Pattern levels Max External Pattern Rate Overshoot (1 V _{p-p}) Pulse Pattern Max pulse pattern frequency Pattern levels Up to 6.5 Gbaud 2, 3, or 4 levels Up to 1 Gbit/s < 2% Pulse Pattern Up to 3.25 GHz 2 levels	Overshoot (1 V _{p-p})	< 2%	
Pattern levels Max External Pattern Rate Overshoot (1 V _{p-p}) Pulse Pattern Max pulse pattern frequency Pattern levels 2, 3, or 4 levels Up to 1 Gbit/s < 2% Pulse Pattern Up to 3.25 GHz 2 levels	Go-Through Pattern		
$\begin{array}{ll} \text{Max External Pattern Rate} & \text{Up to 1 Gbit/s} \\ \text{Overshoot (1 V_{p-p})} & < 2\% \\ \hline \textbf{Pulse Pattern} & \\ \text{Max pulse pattern frequency} & \text{Up to 3.25 GHz} \\ \text{Pattern levels} & \text{2 levels} \\ \end{array}$	Max Go-Through pattern rate	Up to 6.5 Gbaud	
$ \begin{array}{c c} \text{Overshoot } (1 V_{p-p}) & < 2\% \\ \hline \textbf{Pulse Pattern} & \\ \text{Max pulse pattern frequency} & \text{Up to 3.25 GHz} \\ \text{Pattern levels} & 2 \text{levels} \\ \hline \end{array} $	Pattern levels	2, 3, or 4 levels	
Pulse Pattern Max pulse pattern frequency Pattern levels Up to 3.25 GHz 2 levels	Max External Pattern Rate	Up to 1 Gbit/s	
Max pulse pattern frequency Up to 3.25 GHz Pattern levels 2 levels	Overshoot (1 V _{p-p})	< 2%	
Pattern levels 2 levels	Pulse Pattern		
	Max pulse pattern frequency	Up to 3.25 GHz	
Min Rise/Fall time (0-100%)	Pattern levels	·	
	Min Rise/Fall time (0-100%)	150 ps	

Min Pulse Width	300 ps	
Overshoot (1 V _{p-p})	< 2%	
Pattern Modulation		
Amplitude Modulation (AM)		
Carrier patterns	All types	
Modulation sources	Internal or external	
Internal modulating waveforms	Sine, Square, Triangular, Ramp_up, Ramp_down, DC, Sin(x)/x,	
	Gaussian, Lorentz, Exponential Rise, Exponential Decay,	
	Haversine, Noise, ARB	
Modulating frequency	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Depth	0.00% to 120.00%	
Frequency Modulation (FM)		
Carrier patterns	All types	
Modulation source	Internal or external	
Internal modulating waveforms	Sine, Square, Triangular, Ramp_up, Ramp_down, DC, Sin(x)/x,	
	Gaussian, Lorentz, Exponential Rise, Exponential Decay,	
	Haversine, Noise, ARB	
Modulating frequency	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Peak deviation	DC to 6.5 GSymbols/s	
Phase Modulation (PM)		
Carrier patterns	All types	
Modulation source	Internal or external	
Internal modulating waveforms	Sine, Square, Pulse, Ramp_up, Ramp_down, DC, Sin(x)/x,	
	Gaussian, Lorentz, Exponential Rise, Exponential Decay,	
	Haversine, Noise, ARB	
Modulating Frequency	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Phase deviation range	0° to 360°	
Frequency Shift Keying (FSK)		
Carrier Patterns	All types	
Modulation source	Internal or external	
Internal modulating waveforms	Square	
Key rate	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Hop Symbol Rate	1uSymbols/s to 6.5 GSymbols/s for Custom and PRBS pattern	
	18 mHz to 3.25 GHz for Clock pattern	
Number of keys	2	
Phase Shifting Keying (PSK)		
Carrier patterns	All types	
Modulation source	Internal or external	
Internal modulating waveforms	Square	
Key rate	Internal: 18 mHz to 80 MHz, External: 1 GHz max.	
Hop phase	0° to +360°	
Number of keys	2	
Burst		
Patterns	All types	
Туре	Block mode or bit mode	
Burst count	1 to 4,294,967,295 cycles or Infinite	

Timing and Clock

Sampling Rate	

Range	1 S/s to 20 GS/s
Resolution	64 Hz
Accuracy	± 2.0 ppm ± 500 ppb (Opt.)

Digital Outputs

Output Channels	
Connectors	Mini-SAS HD connector on rear panel
	(custom pin-out)
Number of connectors	4
Number of outputs	32-bits
Output impedance	100 Ω differential
Output type	CML with programmable pk-pk amplitude
Maximum update rate	10 Gbps per channel
Memory depth	4.5 Gbit per digital channel

8 bit CML to LVTTL Converter Probe (Optional AT-DTLL8)

Output Connector	20 position 2.54 mm 2 Row IDC Header	
Output type	LVTTL	
Output impedance	50 Ω nominal	
Output voltage	0.8 V to 3.8 V programmable in group of 8 bits	
Maximum Update Rate	125 Mbps @ 0.8 V and 400 Mbps @ 3.6 V	
Dimensions	W 52 mm – H 22 mm – D 76 mm	
Input Connector	Propietary standard	
Cable Length	1 meter	
Cable Type	Proprietary standard	

Proprietary Mini SAS HD to SMA cable (Optional) (TBD)

Output Connector	SMA
Output Type	CML
Number of SMA	16 (8 differential bits)
Cable type	Proprietary standard
Cable length	1 meter
Rise/fall time (10% to 90%)	< 300 ps
Jitter (rms)	< 5 ps

Auxiliary input and output characteristics

Sync in/out	
Connector Type	QSFP connector on rear panel (custom pinout)
Master to Slave delay (typical)	-
Modulation Input (MOD_IN)	
Connector type	SMA on front panel
Number of connectors	2 (for 2 channel models)
	4 (for 4 channel models)
Input impedance	50 Ω

Voltage Window	± 1 V		
Marker Output			
Connector type	SMA on front panel		
Number of connectors	2 (for 2 channel models)		
	4 (for 4 channel models)		
Output impedance	50 Ω		
Output level (into 50 Ω)			
Voltage Window	-0.5 V to 1.65 V		
Amplitude	100 mVpp to 2.15 Vpp		
Resolution	1 mV		
Accuracy	±(5% setting + 25 mV)		
Switching characteristics	,		
Max Update Rate (True Arb Mode)	20 Gbps		
Max Data Rate (True Arb Mode)	>4 Gbps @ 1 Vpp swing		
Max Frequency (AFG Mode)	125 MHz (continuous mode)		
Rise/Fall time (10% to 90%, 2 Vpp)	< 150 ps		
Jitter (rms)	< 10 ps		
Marker out to analog channel skew	·		
Range	True Arb Mode: 0 to 1.368 μs		
. 0	AFG Mode: 0 to 8.5 sec. in Contin. Mode, 0 to 1.8 μs in		
	Trig. Mode		
Resolution	True Arb Mode: 1/64 of DAC sampling period		
	AFG Mode: 1.5625 ps		
Accuracy	±(1% of setting + 50 ps)		
Initial skew	< 20 ps		
Marker Width	·		
Value/Range	True Arb Mode (Marker Automatic Mode):		
	36 sampling clock cycles (Full Rate Mode)		
	18 sampling clock cycles (Half Rate Mode)		
	AFG Mode (Continuous Mode):		
	50% of waveform period (Automatic Marker Width Mode), 500 ps		
	to waveform period – 2,1 ns (Manual Marker Width Mode)		
	AFG Mode (Burst/Sweep Mode):		
	Burst Duration or half of sweep duration		
Trigger/Event Inputs			
Connector	SMA on the Front Panel		
Number of Trigger Inputs	2 (for 2 channel models)		
	4 (for 4 channel models)		
Input Impedance	50 Ω / 1 kΩ		
Slope/Polarity	Positive or negative or both		
Range	± 3.5 V (50 Ohm input impedance)		
	± 10 V (1K Ohm input impedance)		
Threshold control level	-8 V to 8 V		
Threshold control Resolution	10 mV		
Threshold control accuracy	± 100 mV		
Minimum pulse width (1 V _{p-p})	1 ns		
Trigger/gate input to Analog Output Delay	Slow (synchronous) trigger:		
· · · · · · · · · · · · · · · · · ·	AFG mode: < 205 ns (< 240 ns in triggered sweep mode)		
	True Arb mode: <4392 * DAC clock period(ns) + 17.6 ns		

	Fast (asynchronous) trigger:		
	AFG mode: < 195 ns (< 230 ns in triggered sweep mode)		
	True Arb mode: <4392 * DAC clock period(ns) + 17.6 ns		
Trigger In to Output jitter (rms)	AFG mode: < 20 ps		
	True Arb mode: 0.29*DAC clock period		
Trigger In programmable delay range	0 ps to 2418 ps		
Trigger In programmable delay resolution	78 ps		
Maximum Frequency	AFG: 75 MTps on Rising/Falling Edge, 100 MTps on Both Edges		
	True Arb mode: 1/ (Period of the Analog Waveform + 293 DAC		
	Clock period)		
	MTps = Mega Transitions per second		
Reference clock input			
Connector type	SMA on rear panel		
Input Impedance	50 Ω, AC coupled		
Input voltage range	0.2 Vpp to 3.3 Vpp		
Damage level	Maximum Input voltage: 3.6 Vpp		
	Maximum input power : 15 dBm (50 Ω)		
Frequency range	5 MHz to 500 MHz		
Frequency resolution	1 Hz		
Reference clock output			
Connector type	SMA on rear panel		
Output impedance	50 Ω, AC coupled		
Frequency	10 MHz TCXO 100 MHz VCOCXO (Optional)		
Initial accuracy @ 25 °C	± 1.0 ppm ± 500 ppb (Opt.)		
Aging	± 1.0 ppm/year ± 500 ppb/year (Opt.)		
Stability vs. temperature	± 1 ppm ± 50 ppb(Opt.)		
Amplitude	1.65 Vpp		
Phase Noise @ 10 MHz carrier	-120 dBc/Hz at 100 Hz ; -140 dBc/Hz at 1KHz;-150 dBc/Hz at 10		
	KHz		
External Clock Input			
Connector type	SMA on rear panel		
Input impedance	50 Ω, AC coupled		
Frequency ⁸	True Arb: SampleRate / N where:		
• •	$N = 8, 16, 32, 64$ for every SampleRate $^{8-9}$		
	AFG: 312.5 MHz, 625 MHz, 1250 MHz or 2500 MHz (selectable)		
Input power range	+0 dBm to +10 dBm		
Damage level	15 dBm		
Sync Clk Out			
Connector type	SMA on rear panel		
Output impedance	50 Ω, AC coupled		
Frequency	AFG Mode: 20 Ghz / N where N=40, 80, 160,, 5120		
	AWG Mode: Sampling Rate/N, N=64, 128,, 8192 ⁹		
Amplitude	1 Vpp into 50 Ohm		
External Modulation Input (AFG only)	1 VPP III.0 30 01IIII		
Conector Type	SMA on front panel (MOD.IN)		
Input Impedance	SIMA on Front paner (MOD.IN) 50 Ω		
Number of inputs	2 (for 2 channel models)		
ramber of inputs	4 (for 4 channel models)		
Bandwidth			
	1 GHz 1 Vpp (0,5 V to 0.5 V)		
Input voltage range			
Vertical resolution	14-bit		

Pattern Jump In (optional)		
Connector type	DSUB15	
Input signals	DATA[07] + Data_Select + Load	
Internal Data Width	14 bit, multiplexed using Data_Select	
continuous (see the corresponding section in the ⁹ For AWG-717x(D) and AWG-7174(D)-S models the	ne max Sampling rate is limited to 17Gsps	
Number of addressable entries	16384	
Data Range	DC to 1 MHz	
Input Range	VIL = 0 V to 0.8 V / VIH= 2 V to 3.3 V	
Impedance	Internal 1 kΩ pull-up resistor to Vcc (3.3 V)	
Power		
Source voltage and frequency	100 to 240 VAC ± 10% @ 45-66 Hz	
Max. power consumption	Max. 250 W	
Environmental Characteristics		
Temperature (operating)	+5 °C to +40 °C (+41 °F to 104 °F)	
Temperature (non-operating)	-20 °C to +60 °C (-4 °F to 140 °F)	
Humidity (operating)	5% to 80% relative humidity with a maximum wet bulb	
	temperature of 29°C at or below +40°C, (upper limit de-rates to	
	20.6% relative humidity at +40°C). Non-condensing.	
Humidity (non-operating)	5% to 95% relative humidity with a maximum wet bulb	
	temperature of 40°C at or below +60°C, upper limit de-rates to	
	29.8% relative humidity at +60°C. Non-condensing.	
Altitude (operating)	3,000 meters (9,842 feet) maximum at or below 25°C	
Altitude (non-operating)	12,000 meters (39,370 feet) maximum	
EMC and Safety	·	
Safety	EN61010-1	
Main Standards	EN 61326-1:2013 – Electrical equipment for measurement,	
	control and laboratory use – EMC requirements – Part 1: General	
	requirements	
Immunity	EN 61326-1:2013	
System Specifications		
Display	7 inch, 1024x600, capacitive touch LCD	
Operative System	Windows 10	
External Dimensions	W 445 mm – H 135 mm – D 320 mm	
	(3U 19" rackmount)	
Weight	Max. 26.45 lbs (12 Kg)	
Front panel connectors	CH N OUTPUT (SMA) where N=2,4 depending on the model MOD	
•	N INPUT (SMA) where N=2,4 depending on the model MARKER N	
	OUT (SMA) where N=2,4 depending on the model TRG IN N(SMA)	
	where N=2,4 depending on the model 2 USB 3.0 ports	
Rear panel connectors	Ref. Clk. IN (SMA)	
	Ref. Clk. Out (SMA)	
	Sync Clk Out (SMA)	
	Ext Clk IN(SMA)	
	Sync IN (QSFP cable)	
	Sync OUT (QSFP cable)	
	Pattern Jump In (DSUB15) (AWG-7000-FSS opt. only)	
	POD X[70] where X=A,B,C,D (Customized Mini SAS HD)	
	External Monitor ports (one or more)	
	External Monitor ports (one or more)	

	4 USB 3.0 ports
	Ethernet port (10/100/1000BaseT Ethernet, RJ45 port)
	2 PS/2 keyboard and mouse ports
	2 DPI ports
	1 DVI port
Hard Disk	1 TB SSD or better
Processor	Intel® Pentium Gold G6400 4 GHz (or better)
Processor Memory	32 GB or better

20 of 21

DOCUMENT HISTORY

Version	Date	Author	Notes
V1	2024 – 04	At	Created datasheet
-			
-			
-			
	_		

Berkeley Nucleonics Corporation

2955 Kerner Blvd. San Rafael, CA 94901 Phone: (415) 453-9955 berkeleynucleonics.com

Email: info@berkeleynucleonics.com berkeleynucleonics.com/downloads